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LElTER TO THE EDITOR 

Geodesics and curvature of a group of diffeomorphisms and 
motion of an ideal fluid 

F Nakamura, Y Hattori and T Kambe 
Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan 

Received 22 July 1991. in final form 5 November 1991 

Abstract. Motion of an ideal fluid is represented as geodesics on the group of all volume- 
preserving diffeomorphisms. Explicit form of the geodesic equation is presented for the 
fluid flow on a three-torus. Riemannian connection, commntatoc and curvature tensor are 
given explicitly and applied to a couple of simple Rows with the Beltrami property. It is 
found that the c~wature is non-positive far the section of two ABC flows with different 
values of the constants (A, B and C). The present study is an extension of the Amold‘s 
results in the two-dimensional case to three-dimensional Ruid motions. 

We are concemed with a method to connect the problem of hydrodynamics of an ideal 
(incompressible and inviscid) fluid with a problem of finding geodesics on the group 
of all volume-preserving diffeomorphisms. The fact that this group is the appropriate 
configuration space for the hydrodynamics of an ideal fluid was first remarked by 
Arnold [ 11. Under the restriction of two-dimensional flows on the torus T’= R2/(2mZ)’ 
(R: space of real numbers; b: set of integers), explicit formulae for the commutator, 
inner product, Riemannian connection and geodesic equation are presented. These 
formulae allow us to calculate the Riemannian curvature tensors on the geodesics of 
any two-dimensional cross section. By the Jacobi equation in differential geometry, 
the stability of the geodesics is determined by the curvatures on them. By stability it 
is meant here kinematically how the difference of particle positions between two flows 
of different initial conditions develops with time. Negative curvature leads to enhanced 
growth of the deviation in initial conditions with time. (This problem is different from 
that of the dynamical stability of the velocity field.) 

In this letter, we present an explicit form of the geodesic equation for the motion 
of an ideal fluid on a three-torus T’. It is possible to determine an expression of the 
Riemannian curvature of the group of volume-preserving diffeomorphisms. It is interest- 
ing to find that the curvature turns out to be non-positive for the two-dimensional 
section consisting of a particular vector (velocity) field (i.e. a simple flow with the 
Beltrami property) and a general vector field. 

Consider a flow of an ideal fluid of uniform density in an n-dimensional flow 
domain M (a bounded Riemannian manifold without boundary). The present analysis 
is aimed at the flows in three-dimensional space although the formulation is valid for 
n-dimensional flows. The manifold M is provided with the metric given by the inner 
product (X. Y) and the covariant derivative VxY (or Riemannian connection for this 
metric) at any point x E M for any two vector fields X and Y on M. The covariant 
derivative is a differentiation of the vector field Y in the direction of X. When the 
velocity u,(y) of fluid motion is given for y E M and t E W, the particle motion y(  t) is 
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described by the ordinary differential equation, dy/df = u,(y) with y(0) = x E M, where 
x is the initial position of the particle. The solution is written in the form: y = g,(x), 
which describes a smooth curve in M starting from x, usually called Lagrangian particle 
path. 

For each 1, the mapping g, : M + M is an auto-diffeomorphism carrying every 
particle of the fluid in M from the place it was at time 0 to the place it is at time f, 
and in the other sense for the time parameter f in an open interval I cR,  g, describes 
time development of the configuration of particles, called a flow. In case that u,(x) is 
divergence-free, the diffeomorphism is volume-preserving. The volume-preserving 
diffeomorphisms from M to itself form an infinite-dimensional group, which is denoted 
as 9JM) (9, for short), and the flow g, is a c u m  in the group 9". 

Here we make some remarks about the infinite Lie group 9.. For two elements f 
and g in the group, the operationfg is defined byfo g, i.e.fo g(x) =f(g(x)) for X E  M, 
where f o g  is the right translation o f f  by an element g and unit element e is the 
identity map of M. The tangent space T p .  is a set of all divergence-free vector fields 
alongf; i.e. consisting of every vector field V such that V of-' is divergence-free. The 
group 9" admits a Riemannian metric (,) and Riemannian (Levi-Civita) connection 9.  

The initial position x of all the particles is usually taken as the Lagrangian (particle) 
coordinates. The flow g, starts at e, the identity map. The fluid velocity with respect 
to x at each time f is a tangent vector g, E Tg,9".  To get the Eulerian velocity field 
u,(y) at a fixed point y in the space M, we must carry this vector to the tangent space 
at the identity e. This can be done by the right-translation U, = g, 0 g;' ,  or equivalently 
g,w= U,(P,(X)). 

The metric for two tangent vectors X ,  Y E  Tf9 .  is defined by 

( X ,  VIf= ( X ( x )  . Y(x))l,(x) dx  (1) 

where dx  is the (Riemannian) volume element on M, and Ql, denotes the quantity Q 
evaluated at a point f: Due to the volume-preserving nature of the mapping, we have 
the right inuarianf property: ( X  0 g, Y 0 g)l,-~ = ( X ,  Y)l, for 1; g E 9". 

Concerning the connection 92 ? (2, Y being two vector fields on 9"). first we 
consider right-invariant vector fields on 0, i.e. g"(f) = X of; ?"(f) = Y of fo r f c  9, 
where X ,  Y E  T.9, (divergence-free vector fields on M). The connection ? determines 
a new right-invariant vector field 9 2 ~  pR on 9, called covariant derivative of ?" in 
the direction of 2" defined by 

(2) 
where V is the Riemannian connection of M, introduced previously. The covariant 
derivative V , Y  is not necessarily divergence-free for two divergence-free vector fields 
X ,  Y on M. The operation P [  ] denotes the projection to the divergence-free part on 
M. It is shown [2] that the operation (2) gives the right-invariant Riemannian connection 
on 9" associated with the Riemannian metric (1). 

Next we take a curve g, in 9. which satisfies g, = dg,/df = U, 0 g, = U,(&), that is, 
the flow g, is generated by U,. Let 2, be a vector field along which is given by 
right-translation of a time-dependent vector field X ,  on M: X ,  = X ,  0 g,: Then the 
connection determines a new vector field called the covariant derivative of X ,  along g,, 

(3) 
Since 6 / d t  is the differentiation with respect to the parameter. f, we have to add the 
term ax, f J t .  

9 2 R  ?"I, = P[V,Y]  of 

6 g , / d i  = ( J X , / J i + P [ V , X , ] )  0 g , .  
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The operations (2, ?}+e*? and %,+ 62, /df  are characterized uniquely by the 
axioms in the Riemannian geometry [ 3 , 4 ] .  In particular, a vector field %, along g, is 
said to be parallel if the covariant derivative is identically zero. The curve g, is a 
geodesic when its tangent vector gE is parallel along itself (the curve g,).  In  9" endowed 
with the connection V ,  the geodesics are defined by the equation 

Eg,/dt = 0. ( 4 )  

%,E pl$';-cip!e &!east actio:: asser?s :'.a: the XC!iCfi nfan idea! !?=id is I geadesic with 
the (weak) Riemannian structure (1) and Riemannian connection ( 2 ) .  In fact, the 
action I is defined as 

= (&, &)Ig, d t =  dt (u,(x). ur(x))lx dx I I 1  
and the variational problem leads to equation (4), [Z]. 

we get the following equation: 
Using the right invariant property of the metric (,), and identifying X ,  as U, in ( 3 ) ,  

6gJdt  = ( d v , / J t  + PIVo,u,])  ., g, = 0. ( 5 )  

(6) 

For the covariant derivative V , u , ,  we have the orthogonal decomposition [Z] - 
v ",u,i, = t q v u , u t j  -grad pli. 

where the function p is a smooth scalar function on M. Thus, the right-translation of 
equation ( 5 )  leads to 

J U , / J I +  P [ V , u , ]  = 0 (7) 

or in view of ( 6 ) ,  J U , / J ~ + V , U ,  = -grad p .  This is a generalized expression of the Euler 
equation for an ideal fluid on Riemannian manifold M without boundary. It is shown 
that (7) holds in most general cases with boundary [ 2 ] .  For a flat Cartesian space, the 
covariant derivative reduces to the form 

.B 
V,u = (u. grad)u (8) 

for the velocity field U with Cartesian components (vi) at x = (xi). Thus in terms of the 
hydrodynamic notation for n = 3, we have recovered the Euier equation 

J O / J ~ +  ( U. grad)u = -grad p divu=O (9) 

where p is the pressure divided by the uniform fiuid density. 

divergence-free vector fields X ,  Y as 
In the Lie algebra of the group a", the commutator [ ,I* is defined for two 

[X, Y]*=e ,Y-e ,x .  (10) 

The right-invariant property of the metric and connection allows us to make 

Given divergence-free vector fields X ,  Y, Z and W, a new divergence-free vector 
corresponding calculation at e E 9". From now on we write V instead of P [ V ] .  

field k ( X ,  Y ) Z  called the curvature tensor is defined by 

k ( X ,  Y ) Z  = -a,+ ,z+a y~xZ+a,x, . , *z  ( 1 1 )  - 
and then the curvature Rxyzw is given by 

kxYzw=(&x,  Y ) Z ,  w). 
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The sectional curvature for the section uc Tea. spanned by X and Y is 

IZ(u)=(d(X, Y)X, Y)/((X,X)(Y, Y ) - K  Y)*) 

where the denominator is the square of the area of parallelogram spanned by X and 
Y. As we mentioned before, the stability of a geodesic g, is determined by the Jacobi 
field A, along g,. The norm IA,1= denotes the evolution of distance between 
two geodesics gy and g: per unit variation of s which start from the same origin e 
with different initial tangent vectors X and X + s Y  respectively [ 5 ] :  

IA,I = I Ylt -~k(u) t3+O(f") .  (13) 
Thus negative R(v) means enhanced deviation of two geodesics in the section U 
spanned by  X and Y. 

We will now investigate the three-dimensional fluid motion on the flat three-torus 
T' =W3/(2?rZ)', i.e. x = {(x,, x2, x3); mod 2n) for x E T', and the curvature of the group 
9"( T'). Note that this T' is actually bounded manifold without boundary. The elements 
of the Lie algebra of the group $3"(T3) can be thought of as real periodic vector fields 
on T' with the divergence-free property. Such periodic fields are represented by the 
real part of corresponding complex Fourier forms. 

is denoted by e,, where k = ( k , )  for i = l , 2 , 3 .  We now 
complexify the Lie algebra, inner product, commutator and the Riemannian connection 

complex vector space of the complexified Lie algebra. The functions e, ( k  E Z3, k # 0) 
form a basis of this vector space. The velocity field is represented as 

(14) 

where u ( f , x )  and u,,(t) have three components, the last also being written as u ' ( k )  
occasionally ( i  = 1,2,3).  The Fourier components must satisfy the two properties 

The Fourier base 

".."_"..-.".I nnmitnre tenrnr .I.."_.,I- m thit ...-.-._ 111  there ...- "_ fiinrtinnc hemme linear (nr ~- .  multilin.-arI ~ in ... the ...- 

U, (x) = U( r, x) = U,( f ) e, 
I 

( k  . U,) = 0 U-) = U: (15) 
to represent the solenoidal and real conditions, respectively, where the asterisk * 
denotes the complex conjugate. It should be noted that U, has two independent 
polarizations consistent with the first condition. 

Let us take four vector fields satisfying the conditions (15): U, e,, U, el ,  w, e,, z. e.. 
Then we have the following expressions. From ( l ) ,  the inner product is 

(16) 

which is non-zero only for k +  I = 0. The covariant derivative (8) is readily obtained. 
However, this does not satisfy the divergence-free property. The projected covariant 
derivative ? is 

(uk e,, U, e,) = (2?r)'(uk. ~ l ) s O , k + l  

This is perhaps a new form. Equation (10) gives the commutator 

[ u k  e,, uI ell* =i((uk. l ) s - ( v l ~  k)uJ e,+,. 
From the definitions ( 1 1 )  and (12), the curvature tensor is 
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The curvature Rum, takes non-zero value only for k + l + m + n + O  and non-zero 
k, I, m, IL (The terms with zero denominator should be deleted.) 

The above expression of the curvature tensor is of the same form as that of Arnold 
[l] for the two-dimensional case. In the latter case the direction of the vector uk is 
uniquely determined due to the condition (15), that is, for k = ( k , ,  k2,  0) we have 
uk = i(k2, - k , ,  0) and similar expressions for the other vectors. Then it can be readily 
shown that our formulas just reduce to those of Arnold where our U, ek corresponds 
tg his 

An analysis for the distance of each particle convected by two different velocity 
fields of T2,  which is related to the Jacobi field (13), has been carried out by  Hatton 
[6], where an L2-distance between two mappings gy and g: (with small values of s) 
defined by 

d(gy, g3 = (1 Ig%) - gXx)I' dx d.v 1''' (19) 

(here x = (x, y ) )  is found to evolve in the same way as (13) by means of the Taylor 
expansion. This analysis can be extended to T3 without difficulty. 

T2 

The geodesic equation (7) reduces to 

by using (17) where 6, is Kronecker's delta. This is exactly identical to the Fourier 
representations of the Euler equation [7]. This equation is well known in turbulence 
theory. 

As an application, we consider a flow with Beltrami property, that is, we assume 
that the velocity field U, = up e, + u - ~  e-,., i.e. 2 Rerap e"'], satisfies the condition, curl 
U, = AU, for a parameter A E W. This eigenvalue problem can be solved with A'= Ip1'. 
It is readily shown that U, is a steady-state solution. Let X = U, e, be any velocity 
field satisfying (15). Using the above formulas, we obtain 

This non-positive property is considered to be a three-dimensional version of the 
Arnold's result for the curvature of the group a,( T') in any two-dimensional section 
containing the direction .$ represented by the stream function i(e,+e_,). 

The above result can be extended to a two-mode Beltrami flow Up,q which is defined 
by the linear combination U, + U, of two Beltrami flows U, and U,. Although it is 
not difficult to derive the curvature formula in the section of U , ,  and the general 
direction X, we show here another interesting example, that is the ABC flow [8] 
(a three-mode Beltrami flow) represented by 

UABC=A[(ir  1,O) e'x3+(-i,1,0)e-'"~]fB[(0,i, l)efXl+(O,-i, 1)e-'"'] 

+ C[(l,o,i) e'"X+(l, 0, -i) e'-'"z] 

where A, E, C E W. Each term on the right-hand side satisfies the Beltrami property 
with A = -1. We have another ABC flow U,.,.,. for ( A ,  E', C')  # (A, B, C ) .  It is 
straightforward to show that 

(&UABC,  U,.,.,.) U,,,, UAB,CJ  

= -2(Z?r)'{(AB'- BA)'+ (BC' - CB)'+ (CA'- AC')') 
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namely the curvature is negative. It is interesting to find that even in the case where 
both (A,  B, C )  and (A’, B’, C’)  are close and are not in the domain ofchoos [SI, particle 
motion by will not be predicted from the particle motion by UAB, in the course 
of time. It is expected that the present method may be applied to the analysis of rate 
of growth of line-element or surface-element in various flow fields and turbulence. 
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